Benchmarking Gaussian convolutions in high dimensions

Let’s compare the performances of PyTorch and KeOps on simple Gaussian RBF kernel products, as the dimension grows.

Setup

import torch
from matplotlib import pyplot as plt

from benchmark_utils import random_normal, full_benchmark

use_cuda = torch.cuda.is_available()

Benchmark specifications:

N = 10000  # Number of samples
# Dimensions to test:
Dims = [1, 3, 5, 10, 20, 30, 50, 80, 100, 120, 150, 200, 300, 500, 1000, 2000, 3000]

Synthetic dataset.

def generate_samples(D, device="cuda", lang="torch", batchsize=1, **kwargs):
    """Generates two point clouds x, y and a scalar signal b of size N.

    Args:
        D (int): dimension of the ambient space.
        device (str, optional): "cuda", "cpu", etc. Defaults to "cuda".
        lang (str, optional): "torch", "numpy", etc. Defaults to "torch".
        batchsize (int, optional): number of experiments to run in parallel. Defaults to None.

    Returns:
        3-uple of arrays: x, y, b
    """
    randn = random_normal(device=device, lang=lang)

    x = randn((batchsize, N, D))
    y = randn((batchsize, N, D))
    b = randn((batchsize, N, 1))

    return x, y, b

Define a simple Gaussian RBF product, using a tensorized implementation. Note that expanding the squared norm xy2 as a sum x22x,y+y2 allows us to leverage the fast matrix-matrix product of the BLAS/cuBLAS libraries.

def gaussianconv_pytorch(x, y, b, tf32=False, **kwargs):
    """(B,N,D), (B,N,D), (B,N,1) -> (B,N,1)"""

    # If False, we stick to float32 computations.
    # If True, we use TensorFloat32 whenever possible.
    torch.backends.cuda.matmul.allow_tf32 = tf32

    D_xx = (x * x).sum(-1).unsqueeze(2)  # (B,N,1)
    D_xy = torch.matmul(x, y.permute(0, 2, 1))  # (B,N,D) @ (B,D,M) = (B,N,M)
    D_yy = (y * y).sum(-1).unsqueeze(1)  # (B,1,M)
    D_xy = D_xx - 2 * D_xy + D_yy  # (B,N,M)
    K_xy = (-D_xy).exp()  # (B,N,M)

    return K_xy @ b  # (B,N,1)

Define a simple Gaussian RBF product, using an online implementation:

from pykeops.torch import generic_sum


def gaussianconv_keops(x, y, b, backend="GPU", **kwargs):
    D = x.shape[-1]
    fun = generic_sum(
        "Exp(X|Y) * B",  # Formula
        "A = Vi(1)",  # Output
        "X = Vi({})".format(D),  # 1st argument
        "Y = Vj({})".format(D),  # 2nd argument
        "B = Vj(1)",  # 3rd argument
    )
    ex = (-(x * x).sum(-1)).exp()[:, :, None]
    ey = (-(y * y).sum(-1)).exp()[:, :, None]
    return ex * fun(2 * x, y, b * ey, backend=backend)

Same, but without the chunked computation mode:

def gaussianconv_keops_nochunks(x, y, b, backend="GPU", **kwargs):
    D = x.shape[-1]
    fun = generic_sum(
        "Exp(X|Y) * B",  # Formula
        "A = Vi(1)",  # Output
        "X = Vi({})".format(D),  # 1st argument
        "Y = Vj({})".format(D),  # 2nd argument
        "B = Vj(1)",  # 3rd argument
        enable_chunks=False,
    )
    ex = (-(x * x).sum(-1)).exp()[:, :, None]
    ey = (-(y * y).sum(-1)).exp()[:, :, None]
    return ex * fun(2 * x, y, b * ey, backend=backend)

PyTorch vs. KeOps (Gpu)

routines = [
    (gaussianconv_pytorch, "PyTorch (GPU, TF32=False)", {"tf32": False}),
    (gaussianconv_pytorch, "PyTorch (GPU, TF32=True)", {"tf32": True}),
    (gaussianconv_keops_nochunks, "KeOps < 1.4.2 (GPU)", {}),
    (gaussianconv_keops, "KeOps >= 1.4.2 (GPU)", {}),
]

full_benchmark(
    f"Gaussian Matrix-Vector products in high dimension, with N={N:,} (GPU)",
    routines,
    generate_samples,
    problem_sizes=Dims,
    xlabel="Dimension of the points",
)


plt.show()
Gaussian Matrix-Vector products in high dimension, with N=10,000 (GPU)
Benchmarking : Gaussian Matrix-Vector products in high dimension, with N=10,000 (GPU) ===============================
PyTorch (GPU, TF32=False) -------------
  1x100 loops of size    1 :   1x100x   5.7 ms
  1x100 loops of size    3 :   1x100x   5.7 ms
  1x100 loops of size    5 :   1x100x   5.7 ms
  1x100 loops of size   10 :   1x100x   5.7 ms
  1x100 loops of size   20 :   1x100x   5.7 ms
  1x100 loops of size   30 :   1x100x   5.9 ms
  1x100 loops of size   50 :   1x100x   5.9 ms
  1x100 loops of size   80 :   1x100x   6.1 ms
  1x100 loops of size  100 :   1x100x   6.4 ms
  1x100 loops of size  120 :   1x100x   6.5 ms
  1x100 loops of size  150 :   1x100x   6.9 ms
  1x100 loops of size  200 :   1x100x   7.3 ms
  1x100 loops of size  300 :   1x100x   8.4 ms
  1x100 loops of size  500 :   1x100x  10.5 ms
  1x100 loops of size   1 k:   1x100x  15.9 ms
  1x100 loops of size   2 k:   1x100x  27.2 ms
  1x 10 loops of size   3 k:   1x 10x  38.5 ms
PyTorch (GPU, TF32=True) -------------
  1x100 loops of size    1 :   1x100x   5.7 ms
  1x100 loops of size    3 :   1x100x   5.7 ms
  1x100 loops of size    5 :   1x100x   5.7 ms
  1x100 loops of size   10 :   1x100x   5.7 ms
  1x100 loops of size   20 :   1x100x   5.7 ms
  1x100 loops of size   30 :   1x100x   5.8 ms
  1x100 loops of size   50 :   1x100x   6.0 ms
  1x100 loops of size   80 :   1x100x   6.0 ms
  1x100 loops of size  100 :   1x100x   6.2 ms
  1x100 loops of size  120 :   1x100x   6.3 ms
  1x100 loops of size  150 :   1x100x   6.8 ms
  1x100 loops of size  200 :   1x100x   6.7 ms
  1x100 loops of size  300 :   1x100x   7.5 ms
  1x100 loops of size  500 :   1x100x   8.6 ms
  1x100 loops of size   1 k:   1x100x  11.5 ms
  1x100 loops of size   2 k:   1x100x  17.3 ms
  1x100 loops of size   3 k:   1x100x  23.3 ms
KeOps < 1.4.2 (GPU) -------------
  1x100 loops of size    1 :   1x100x 510.8 µs
  1x100 loops of size    3 :   1x100x 544.7 µs
  1x100 loops of size    5 :   1x100x 587.7 µs
  1x100 loops of size   10 :   1x100x 781.4 µs
  1x100 loops of size   20 :   1x100x   1.1 ms
  1x100 loops of size   30 :   1x100x   1.5 ms
  1x100 loops of size   50 :   1x100x   4.1 ms
  1x100 loops of size   80 :   1x100x   5.5 ms
  1x100 loops of size  100 :   1x100x   8.7 ms
  1x100 loops of size  120 :   1x100x  11.6 ms
  1x100 loops of size  150 :   1x100x  11.0 ms
  1x100 loops of size  200 :   1x100x  10.4 ms
  1x100 loops of size  300 :   1x100x  98.2 ms
  1x 10 loops of size  500 :   1x 10x 977.2 ms
  1x  1 loops of size   1 k:   1x  1x    2.4 s
  1x  1 loops of size   2 k:   1x  1x    9.5 s
  1x  1 loops of size   3 k:   1x  1x   21.7 s
** Too slow!
KeOps >= 1.4.2 (GPU) -------------
  1x100 loops of size    1 :   1x100x 509.2 µs
  1x100 loops of size    3 :   1x100x 544.1 µs
  1x100 loops of size    5 :   1x100x 582.6 µs
  1x100 loops of size   10 :   1x100x 777.6 µs
  1x100 loops of size   20 :   1x100x   1.1 ms
  1x100 loops of size   30 :   1x100x   1.5 ms
  1x100 loops of size   50 :   1x100x   4.0 ms
  1x100 loops of size   80 :   1x100x   5.4 ms
  1x100 loops of size  100 :   1x100x   9.5 ms
  1x100 loops of size  120 :   1x100x  13.3 ms
  1x100 loops of size  150 :   1x100x  27.0 ms
  1x 10 loops of size  200 :   1x 10x  24.1 ms
  1x 10 loops of size  300 :   1x 10x  35.1 ms
  1x 10 loops of size  500 :   1x 10x  57.6 ms
  1x 10 loops of size   1 k:   1x 10x 116.7 ms
  1x 10 loops of size   2 k:   1x 10x 239.8 ms
  1x  1 loops of size   3 k:   1x  1x 351.3 ms

Total running time of the script: (2 minutes 14.658 seconds)

Gallery generated by Sphinx-Gallery