SumSoftMaxWeight reduction (with LazyTensors)

Using the pykeops.numpy.Genred API, we show how to perform a computation specified through:

  • Its inputs:

    • \(x\), an array of size \(M\times 3\) made up of \(M\) vectors in \(\mathbb R^3\),

    • \(y\), an array of size \(N\times 3\) made up of \(N\) vectors in \(\mathbb R^3\),

    • \(b\), an array of size \(N\times 2\) made up of \(N\) vectors in \(\mathbb R^2\).

  • Its output:

    • \(c\), an array of size \(M\times 2\) made up of \(M\) vectors in \(\mathbb R^2\) such that

      \[c_i = \frac{\sum_j \exp(K(x_i,y_j))\,\cdot\,b_j }{\sum_j \exp(K(x_i,y_j))},\]

      with \(K(x_i,y_j) = \|x_i-y_j\|^2\).

Setup

Standard imports:

import time

import matplotlib.pyplot as plt
import numpy as np

from pykeops.numpy import LazyTensor as kf
from pykeops.numpy import Vi, Vj
from pykeops.numpy.utils import WarmUpGpu

Define our dataset:

M = 5000  # Number of "i" points
N = 4000  # Number of "j" points
D = 3  # Dimension of the ambient space
Dv = 2  # Dimension of the vectors

x = 2 * np.random.randn(M, D)
y = 2 * np.random.randn(N, D)
b = np.random.rand(N, Dv)

# KeOps implementation with the helper
WarmUpGpu()
start = time.time()
c = kf.sum((Vi(x) - Vj(y)) ** 2, axis=2)
c = kf.sumsoftmaxweight(c, Vj(b), axis=1)
print("Timing (KeOps implementation): ", round(time.time() - start, 5), "s")

# compare with direct implementation
start = time.time()
cc = np.sum((x[:, None, :] - y[None, :, :]) ** 2, axis=2)
cc -= np.max(cc, axis=1)[:, None]  # Subtract the max to prevent numeric overflows
cc = np.exp(cc) @ b / np.sum(np.exp(cc), axis=1)[:, None]
print("Timing (Numpy implementation): ", round(time.time() - start, 5), "s")

print("Relative error : ", (np.linalg.norm(c - cc) / np.linalg.norm(c)).item())

# Plot the results next to each other:
for i in range(Dv):
    plt.subplot(Dv, 1, i + 1)
    plt.plot(c[:40, i], '-', label='KeOps')
    plt.plot(cc[:40, i], '--', label='NumPy')
    plt.legend(loc='lower right')
plt.tight_layout();
plt.show()
../../_images/sphx_glr_plot_test_softmax_numpy_helper_001.png

Out:

Warming up the Gpu (numpy bindings) !!!
Timing (KeOps implementation):  0.01729 s
Timing (Numpy implementation):  0.9593 s
Relative error :  9.151602363981428e-16
/home/bcharlier/keops/pykeops/examples/numpy/plot_test_softmax_numpy_helper.py:79: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  plt.show()

Total running time of the script: ( 0 minutes 11.904 seconds)

Gallery generated by Sphinx-Gallery