Arg-K-Min reduction

Using the pykeops.numpy API, we define a dataset of N points in \(\mathbb R^D\) and compute for each point the indices of its K nearest neighbours (including itself).


Standard imports:

import time
import numpy as np
import matplotlib.pyplot as plt
from pykeops.numpy import Genred

Define our dataset:

N = 1000  # Number of points
D = 2     # Dimension of the ambient space
K = 3     # Number of neighbors to look for

dtype = 'float32'  # May be 'float32' or 'float64'

x = np.random.rand(N,D).astype(dtype)

KeOps Kernel

formula   =  'SqDist(x,y)'          # Use a simple Euclidean (squared) norm
variables = ['x = Vi('+str(D)+')',  # First arg : i-variable, of size D
             'y = Vj('+str(D)+')']  # Second arg: j-variable, of size D

# N.B.: The number K is specified as an optional argument `opt_arg`
my_routine = Genred(formula, variables, reduction_op='ArgKMin', axis=1,
                    dtype=dtype, opt_arg=K)

Using our new pykeops.numpy.Genred() routine, we perform a K-nearest neighbor search ( reduction_op = "ArgKMin" ) over the \(j\) variable \(y_j\) ( axis = 1):


If CUDA is available and backend is "auto" or not specified, KeOps will:

  1. Load the data on the GPU
  2. Perform the computation on the device
  3. Unload the result back to the CPU

as it is assumed to be most efficient for large-scale problems. By specifying backend = "CPU" in the call to my_routine, you can bypass this procedure and use a simple C++ for loop instead.

# Dummy first call to warm-up the GPU and thus get an accurate timing:
my_routine( np.random.rand(10,D).astype(dtype),
            np.random.rand(10,D).astype(dtype) )

# Actually perform our K-nn search:
start = time.time()
ind = my_routine(x, x, backend="auto")
print("Time to perform the K-nn search: ",round(time.time()-start,5),"s")

# The result is now an (N,K) array of integers:
print("Output values :")

plt.scatter(x[:,0], x[:,1], s= 25*500 / len(x))

for k in range(K):  # Highlight some points and their nearest neighbors
    plt.scatter(x[ ind[:4,k], 0],x[ ind[:4,k], 1], s= 100)

plt.axis("equal") ; plt.axis([0,1,0,1])


Time to perform the K-nn search:  0.00057 s
Output values :
[[  0 295 201]
 [  1  23 627]
 [  2 256 218]
 [997  37 532]
 [998 748 507]
 [999 647 637]]

Total running time of the script: ( 0 minutes 2.595 seconds)

Gallery generated by Sphinx-Gallery