Symbolic weighted squared norm of a LazyTensor binary operation for
LazyTensor
objects.
Arguments
- x
a
vector
of numeric values or a scalar value.- s
a
LazyTensor
, aComplexLazyTensor
, a vector of numeric values, or a scalar value.
Details
weightedsqnorm(x, s)
returns a LazyTensor
that encodes,
symbolically, the weighted squared norm of a vector x
with weights stored
in the LazyTensor s
.
Note: x
, and s
should have the same inner dimension.
Note: Run browseVignettes("rkeops")
to access the vignettes and find
details about this function in the "RKeOps LazyTensor" vignette, at
section "Simple vector operations".
Examples
if (FALSE) {
x <- matrix(runif(100 * 3), 100, 3) # arbitrary R matrix, 100 rows, 3 columns
s <- matrix(runif(100 * 3), 100, 3) # arbitrary R matrix, 100 rows, 3 columns
x_i <- LazyTensor(x, index = 'i') # creating LazyTensor from matrix x,
# indexed by 'i'
s_j <- LazyTensor(s, index = 'j') # creating LazyTensor from matrix s,
# indexed by 'j'
wsqn_xy <- weightedsqnorm(x_i, s_j) # symbolic matrix, 100 rows,1 columns
}