Sum of weighted Soft-Max reduction.
Sum of weighted Soft-Max reduction.
Arguments
- x
a
LazyTensor
or aComplexLazyTensor
.- index
a
character
corresponding to the reduction dimension that should be either"i"
or"j"
to specify whether if the reduction is indexed by"i"
or"j"
.- weight
an optional object (
LazyTensor
orComplexLazyTensor
) that specifies scalar or vector-valued weights.
Details
If x
is a LazyTensor
or a ComplexLazyTensor
,
sumsoftmaxweight(x, index, weight)
will:
if
index = "i"
, return the Sum of weighted Soft-Max reduction ofx
over thei
indexes;if
index = "j"
, return the Sum of weighted Soft-Max reduction ofx
over thej
indexes.
Note: Run browseVignettes("rkeops")
to access the vignettes and find
details about this function in the "RKeOps LazyTensor" vignette, at
section "Reductions".
Examples
if (FALSE) {
x <- matrix(runif(150 * 3), 150, 3)
x_i <- LazyTensor(x, index = 'i')
y <- matrix(runif(100 * 3), 100, 3)
y_j <- LazyTensor(y, index = 'j')
V_ij <- x_i - y_j # weight matrix
S_ij = sum(V_ij^2)
ssmaxweight <- sumsoftmaxweight(S_ij, 'i', V_ij) # sumsoftmaxweight reduction
# over the 'i' indices
}
if (FALSE) {
x <- matrix(runif(150 * 3), 150, 3)
x_i <- LazyTensor(x, index = 'i')
y <- matrix(runif(100 * 3), 100, 3)
y_j <- LazyTensor(y, index = 'j')
V_ij <- x_i - y_j # weight matrix
S_ij = sum(V-ij^2)
# sumsoftmaxweight reduction over the 'i' indices
ssmaxw_red <- sumsoftmaxweight_reduction(S_ij, 'i', V_ij)
}