Note
Go to the end to download the full example code
SumSoftMaxWeight reduction (with LazyTensors)
Using the pykeops.numpy.Genred
API,
we show how to perform a computation specified through:
Its inputs:
\(x\), an array of size \(M\times 3\) made up of \(M\) vectors in \(\mathbb R^3\),
\(y\), an array of size \(N\times 3\) made up of \(N\) vectors in \(\mathbb R^3\),
\(b\), an array of size \(N\times 2\) made up of \(N\) vectors in \(\mathbb R^2\).
Its output:
\(c\), an array of size \(M\times 2\) made up of \(M\) vectors in \(\mathbb R^2\) such that
\[c_i = \frac{\sum_j \exp(K(x_i,y_j))\,\cdot\,b_j }{\sum_j \exp(K(x_i,y_j))},\]with \(K(x_i,y_j) = \|x_i-y_j\|^2\).
Setup
Standard imports:
import time
import matplotlib.pyplot as plt
import numpy as np
from pykeops.numpy import LazyTensor as kf
from pykeops.numpy import Vi, Vj
from pykeops.numpy.utils import WarmUpGpu
Define our dataset:
M = 5000 # Number of "i" points
N = 4000 # Number of "j" points
D = 3 # Dimension of the ambient space
Dv = 2 # Dimension of the vectors
x = 2 * np.random.randn(M, D)
y = 2 * np.random.randn(N, D)
b = np.random.rand(N, Dv)
# KeOps implementation with the helper
WarmUpGpu()
start = time.time()
c = kf.sum((Vi(x) - Vj(y)) ** 2, axis=2)
c = kf.sumsoftmaxweight(c, Vj(b), axis=1)
print("Timing (KeOps implementation): ", round(time.time() - start, 5), "s")
# compare with direct implementation
start = time.time()
cc = np.sum((x[:, None, :] - y[None, :, :]) ** 2, axis=2)
cc -= np.max(cc, axis=1)[:, None] # Subtract the max to prevent numeric overflows
cc = np.exp(cc) @ b / np.sum(np.exp(cc), axis=1)[:, None]
print("Timing (Numpy implementation): ", round(time.time() - start, 5), "s")
print("Relative error : ", (np.linalg.norm(c - cc) / np.linalg.norm(c)).item())
# Plot the results next to each other:
for i in range(Dv):
plt.subplot(Dv, 1, i + 1)
plt.plot(c[:40, i], "-", label="KeOps")
plt.plot(cc[:40, i], "--", label="NumPy")
plt.legend(loc="lower right")
plt.tight_layout()
plt.show()
[pyKeOps] Warming up the Gpu (numpy bindings) !!!
[pyKeOps] Warning : keyword argument dtype in Genred is deprecated ; argument is ignored.
Timing (KeOps implementation): 0.02696 s
Timing (Numpy implementation): 0.76242 s
Relative error : 6.093681007621708e-16
Total running time of the script: (0 minutes 0.976 seconds)