K-NN on the MNIST dataset - PyTorch API

The argKmin(K) reduction supported by KeOps pykeops.torch.LazyTensor allows us to perform bruteforce k-nearest neighbors search with four lines of code. It can thus be used to implement a large-scale K-NN classifier, without memory overflows on the full MNIST dataset.

Setup

Standard imports:

import time

import torch
from matplotlib import pyplot as plt

from pykeops.torch import LazyTensor

use_cuda = torch.cuda.is_available()
tensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor

Load the MNIST dataset: 70,000 images of shape (28,28).

try:
    from sklearn.datasets import fetch_openml
except ImportError:
    raise ImportError("This tutorial requires Scikit Learn version >= 0.20.")

mnist = fetch_openml("mnist_784", cache=True, as_frame=False)

x = tensor(mnist.data.astype("float32"))
y = tensor(mnist.target.astype("int64"))
/opt/conda/lib/python3.10/site-packages/sklearn/datasets/_openml.py:968: FutureWarning: The default value of `parser` will change from `'liac-arff'` to `'auto'` in 1.4. You can set `parser='auto'` to silence this warning. Therefore, an `ImportError` will be raised from 1.4 if the dataset is dense and pandas is not installed. Note that the pandas parser may return different data types. See the Notes Section in fetch_openml's API doc for details.
  warn(

Split it into a train and test set:

D = x.shape[1]
Ntrain, Ntest = (60000, 10000) if use_cuda else (1000, 100)
x_train, y_train = x[:Ntrain, :].contiguous(), y[:Ntrain].contiguous()
x_test, y_test = (
    x[Ntrain : Ntrain + Ntest, :].contiguous(),
    y[Ntrain : Ntrain + Ntest].contiguous(),
)