Kernel interpolation - PyTorch API

The pykeops.torch.LazyTensor.solve(b, alpha=1e-10) method of KeOps pykeops.torch.LazyTensor allows you to solve optimization problems of the form

\[a^{\star}=\operatorname*{argmin}_a \| (\alpha\operatorname{Id}+K_{xx})a -b\|^2_2,\]

where \(K_{xx}\) is a symmetric, positive definite linear operator defined through the KeOps generic syntax and \(\alpha\) is a nonnegative regularization parameter. In the following script, we use it to solve large-scale Kriging (aka. Gaussian process regression or generalized spline interpolation) problems with a linear memory footprint.

Setup

Standard imports:

import time

import torch
from matplotlib import pyplot as plt

from pykeops.torch import LazyTensor

Generate some data:

use_cuda = torch.cuda.is_available()
dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor

N = 10000 if use_cuda else 1000  # Number of samples

# Sampling locations:
x = torch.rand(N, 1).type(dtype)

# Some random-ish 1D signal:
b = x + .5 * (6 * x).sin() + .1 * (20 * x).sin() + .05 * torch.randn(N, 1).type(dtype)

Interpolation in 1D

Specify our regression model - a simple Gaussian variogram or kernel matrix of deviation sigma:

def gaussian_kernel(x, y, sigma = .1):
    x_i = LazyTensor( x[:,None,:] )  # (M, 1, 1)
    y_j = LazyTensor( y[None,:,:] )  # (1, N, 1)
    D_ij = ( (x_i - y_j) ** 2 ).sum(-1)  # (M, N) symbolic matrix of squared distances
    return ( - D_ij / (2 * sigma**2) ).exp()  # (M, N) symbolic Gaussian kernel matrix

Perform the Kernel interpolation, without forgetting to specify the ridge regularization parameter alpha which controls the trade-off between a perfect fit (alpha = 0) and a smooth interpolation (alpha = \(+\infty\)):

alpha = 1.  # Ridge regularization

start = time.time()

K_xx = gaussian_kernel(x, x)
a = K_xx.solve(b, alpha=alpha)

end = time.time()

print('Time to perform an RBF interpolation with {:,} samples in 1D: {:.5f}s'.format(
    N, end - start))

Out:

Time to perform an RBF interpolation with 10,000 samples in 1D: 0.04990s

Display the (fitted) model on the unit interval:

# Extrapolate on a uniform sample:
t = torch.linspace(0, 1, 1001).type(dtype)[:, None]

K_tx = gaussian_kernel(t, x)
mean_t = K_tx@a

# 1D plot:
plt.figure(figsize=(8, 6))

plt.scatter(x.cpu()[:, 0], b.cpu()[:, 0], s=100 / len(x))  # Noisy samples
plt.plot(t.cpu().numpy(), mean_t.cpu().numpy(), "r")

plt.axis([0, 1, 0, 1]);
plt.tight_layout()
../../_images/sphx_glr_plot_RBF_interpolation_torch_001.png

Interpolation in 2D

Generate some data:

# Sampling locations:
x = torch.rand(N, 2).type(dtype)

# Some random-ish 2D signal:
b = ((x - .5) ** 2).sum(1, keepdim=True)
b[b > .4 ** 2] = 0
b[b < .3 ** 2] = 0
b[b >= .3 ** 2] = 1
b = b + .05 * torch.randn(N, 1).type(dtype)

# Add 25% of outliers:
Nout = N // 4
b[-Nout:] = torch.rand(Nout, 1).type(dtype)

Specify our regression model - a simple Exponential variogram or Laplacian kernel matrix of deviation sigma:

def laplacian_kernel(x, y, sigma = .1):
    x_i = LazyTensor( x[:,None,:] )  # (M, 1, 1)
    y_j = LazyTensor( y[None,:,:] )  # (1, N, 1)
    D_ij = ( (x_i - y_j) ** 2 ).sum(-1)  # (M, N) symbolic matrix of squared distances
    return ( - D_ij.sqrt() / sigma ).exp()  # (M, N) symbolic Laplacian kernel matrix

Perform the Kernel interpolation, without forgetting to specify the ridge regularization parameter alpha which controls the trade-off between a perfect fit (alpha = 0) and a smooth interpolation (alpha = \(+\infty\)):

alpha = 10  # Ridge regularization

start = time.time()

K_xx = laplacian_kernel(x, x)
a = K_xx.solve(b, alpha=alpha)

end = time.time()

print('Time to perform an RBF interpolation with {:,} samples in 2D: {:.5f}s'.format(N, end - start))

Out:

Time to perform an RBF interpolation with 10,000 samples in 2D: 0.03966s

Display the (fitted) model on the unit square:

# Extrapolate on a uniform sample:
X = Y = torch.linspace(0, 1, 101).type(dtype)
X, Y = torch.meshgrid(X, Y)
t = torch.stack((X.contiguous().view(-1), Y.contiguous().view(-1)), dim=1)

K_tx = laplacian_kernel(t, x)
mean_t = K_tx@a
mean_t = mean_t.view(101, 101)

# 2D plot: noisy samples and interpolation in the background
plt.figure(figsize=(8, 8))

plt.scatter(x.cpu()[:, 0], x.cpu()[:, 1], c=b.cpu().view(-1), s=25000 / len(x), cmap="bwr")
plt.imshow(mean_t.cpu().numpy()[::-1, :], interpolation="bilinear", extent=[0, 1, 0, 1], cmap="coolwarm")

# sphinx_gallery_thumbnail_number = 2
plt.axis([0, 1, 0, 1])
plt.tight_layout()
plt.show()
../../_images/sphx_glr_plot_RBF_interpolation_torch_002.png

Out:

/home/bcharlier/keops/pykeops/tutorials/interpolation/plot_RBF_interpolation_torch.py:173: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  plt.show()

Total running time of the script: ( 0 minutes 0.684 seconds)

Gallery generated by Sphinx-Gallery