# Fitting a Gaussian Mixture Model¶

In this tutorial, we show how to use KeOps to fit a Gaussian Mixture Model with a custom sparsity prior through gradient descent on the empiric log-likelihood.

## Setup¶

Standard imports:

import matplotlib.cm as cm
import numpy as np
import torch
from matplotlib import pyplot as plt
from torch.nn import Module, Parameter
from torch.nn.functional import softmax, log_softmax

from pykeops.torch import Kernel, kernel_product


Define our dataset: a collection of points $$(x_i)_{i\in[1,N]}$$ which describe a spiral in the unit square.

# Choose the storage place for our data : CPU (host) or GPU (device) memory.
dtype = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor

N = 10000  # Number of samples
t = torch.linspace(0, 2 * np.pi, N + 1)[:-1]
x = torch.stack((.5 + .4 * (t / 7) * t.cos(), .5 + .3 * t.sin()), 1)
x = x + .02 * torch.randn(x.shape)
x = x.type(dtype)


Display:

# Create a uniform grid on the unit square:
res = 200
ticks = np.linspace(0, 1, res + 1)[:-1] + .5 / res
X, Y = np.meshgrid(ticks, ticks)

grid = torch.from_numpy(np.vstack((X.ravel(), Y.ravel())).T).contiguous().type(dtype)


## Gaussian Mixture Model¶

In this tutorial, we focus on a Gaussian Mixture Model with varying covariance matrices. For all class indices $$j$$ in $$[1,M]$$, we denote by $$w_j$$ the weight score of the $$j$$-th class, i.e. the real number such that

$W_j ~=~ \frac{\exp(w_j)}{\sum_k \exp(w_k)}$

is the probability assigned to the $$j$$-th component of the mixture. Then, we encode the (inverse) covariance matrix $$\Sigma_j^{-1}$$ of this component through an arbitrary matrix $$A_j$$:

$\Sigma_j^{-1} ~=~ A_j A_j^\intercal$

and can evaluate the likelihood of our model at any point $$x$$ through:

$\text{likelihood}_{(w_j),(A_j)}(x)~=~ \sum_{j=1}^M W_j\cdot (2\pi)^{-D/2}\cdot\sqrt{\text{det}(A_j A_j^\intercal) } \cdot e^{-\tfrac{1}{2} (x - \mu_j)^\intercal \, A_j A_j^\intercal\, (x - \mu_j)}.$

The log-likelihood of a sample $$(x_i)$$ with respect to the parameters $$(A_j)$$ and $$(w_j)$$ can thus be computed using a straightforward log-sum-exp reduction, which is most easily implemented through the pykeops.torch.kernel_product() interface.

Custom sparsity prior. Going further, we may allow our model to select adaptively the number of active components by adding a sparsity-inducing penalty on the class weights $$W_j$$. For instance, we could minimize the cost:

$\text{Cost}_{(x_i)}((w_j),(A_j)) ~=~ - \frac{1}{N}\sum_{i=1}^N \log \text{likelihood}_{(w_j),(A_j)}(x_i) ~+~ \frac{s}{M} \sum_{j=1}^M \sqrt{W_j},$

where the sparsity coefficient $$s$$ controls the amount of non-empty clusters. Even though this energy cannot be optimized in closed form through an EM-like algorithm, automatic differentiation allows us to fit this custom model without hassle:

class GaussianMixture(Module):
def __init__(self, M, sparsity=0, D=2):
super(GaussianMixture, self).__init__()

self.params = {'id': Kernel('gaussian(x,y)')}
# We initialize our model with random blobs scattered across
# the unit square, with a small-ish radius:
self.mu = Parameter(torch.rand(M, D).type(dtype))
self.A = 15 * torch.ones(M, 1, 1) * torch.eye(D, D).view(1, D, D)
self.A = Parameter((self.A).type(dtype).contiguous())
self.w = Parameter(torch.ones(M, 1).type(dtype))
self.sparsity = sparsity

def update_covariances(self):
"""Computes the full covariance matrices from the model's parameters."""
(M, D, _) = self.A.shape
self.params['gamma'] = (torch.matmul(self.A, self.A.transpose(1, 2))).view(M, D * D) / 2

def covariances_determinants(self):
"""Computes the determinants of the covariance matrices.

N.B.: PyTorch still doesn't support batched determinants, so we have to
implement this formula by hand.
"""
S = self.params['gamma']
if S.shape == 2 * 2:
dets = S[:, 0] * S[:, 3] - S[:, 1] * S[:, 2]
else:
raise NotImplementedError
return dets.view(-1, 1)

def weights(self):
"""Scalar factor in front of the exponential, in the density formula."""
return softmax(self.w, 0) * self.covariances_determinants().sqrt()

def weights_log(self):
"""Logarithm of the scalar factor, in front of the exponential."""
return log_softmax(self.w, 0) + .5 * self.covariances_determinants().log()

def likelihoods(self, sample):
"""Samples the density on a given point cloud."""
self.update_covariances()
return kernel_product(self.params, sample, self.mu, self.weights(), mode='sum')

def log_likelihoods(self, sample):
"""Log-density, sampled on a given point cloud."""
self.update_covariances()
return kernel_product(self.params, sample, self.mu, self.weights_log(), mode='lse')

def neglog_likelihood(self, sample):
"""Returns -log(likelihood(sample)) up to an additive factor."""
ll = self.log_likelihoods(sample)
log_likelihood = torch.mean(ll)
# N.B.: We add a custom sparsity prior, which promotes empty clusters
#       through a soft, concave penalization on the class weights.
return -log_likelihood + self.sparsity * softmax(self.w, 0).sqrt().mean()

def get_sample(self, N):
"""Generates a sample of N points."""
raise NotImplementedError()

def plot(self, sample):
"""Displays the model."""
plt.clf()
# Heatmap:
heatmap = self.likelihoods(grid)
heatmap = heatmap.view(res, res).data.cpu().numpy()  # reshape as a "background" image

scale = np.amax(np.abs(heatmap[:]))
plt.imshow(-heatmap, interpolation='bilinear', origin='lower',
vmin=-scale, vmax=scale, cmap=cm.RdBu,
extent=(0, 1, 0, 1))

# Log-contours:
log_heatmap = self.log_likelihoods(grid)
log_heatmap = log_heatmap.view(res, res).data.cpu().numpy()

scale = np.amax(np.abs(log_heatmap[:]))
levels = np.linspace(-scale, scale, 41)

plt.contour(log_heatmap, origin='lower', linewidths=1., colors="#C8A1A1",
levels=levels, extent=(0, 1, 0, 1))

# Scatter plot of the dataset:
xy = sample.data.cpu().numpy()
plt.scatter(xy[:, 0], xy[:, 1], 100 / len(xy), color='k')


## Optimization¶

In typical PyTorch fashion, we fit our Mixture Model to the data through a stochastic gradient descent on our empiric log-likelihood, with a sparsity-inducing penalty:

model = GaussianMixture(30, sparsity=20)

loss = np.zeros(501)

for it in range(501):
cost = model.neglog_likelihood(x)  # Cost to minimize.
cost.backward()  # Backpropagate to compute the gradient.
optimizer.step()

loss[it] = cost.data.cpu().numpy()

# sphinx_gallery_thumbnail_number = 6
if it in [0, 10, 100, 150, 250, 500]:
plt.pause(.01)
plt.figure(figsize=(8,8))
model.plot(x)
plt.title('Density, iteration ' + str(it), fontsize=20)
plt.axis("equal")  ; plt.axis([0,1,0,1])
plt.tight_layout() ; plt.pause(.01)

• • • • • • Monitor the optimization process:

plt.figure()
plt.plot(loss)
plt.tight_layout()
plt.show() Total running time of the script: ( 0 minutes 7.762 seconds)

Gallery generated by Sphinx-Gallery